Geomembrane Protection Efficiency

Warren Hornsey Pr. Eng.

TRI Australasia Pty Ltd, Gold Coast, Australia

Contents

- * Europe vs. America
- * Method comparison
- * Strain Measurement Comparison
- * Conclusions
 - * What you need to know when specifying

- * Protection geotextiles are not new
- * There can be multiple inputs
- * Test methods vary
- * Analysis techniques vary

* Geotextiles do reduce strain

- * Graphical Output
 - * Strain Distribution

370g/m² Geotextile protection

- Testing
- The results depend on a number of variables which are built into the tests
 - Gravel
 - Geotextile
 - Subgrade
 - * Rubber or Clay
 - * GCL (level of hydration)
 - Recording plate
 - * Position
 - * Materials
- * Good science = limited variables

Europe vs. America

THIS IS IMPORTANT

- * European philosophy
 - * Stain limitation
 - * As close to zero as possible
 - * 2000 3500g/m² geotextile
- * American philosophy
 - * Puncture limitation
 - * Strain is not an issue
 - * 250 400g/m² geotextile

Different Resins used!

Standard Test Methods

- * EN 13719 (2016): Geotextiles and geotextile related products -Determination of the long-term protection efficiency of geotextiles in contact with geosynthetic barriers.
- * LFE 2 Cylinder testing geomembranes and their protective materials
- * ASTM D5514-06 (2011): Large scale hydrostatic puncture testing of geosynthetics

* EN 13719 (2016)/LFE 2

- * 300mm dia
- * Rubber base
- * 1.3 mm lead recording plate
- * Readings at 3mm intervals
- * 5 indentations measured
- * Worst 3 reported

* EN 13719 (2016)/LFE 2

- * Advantages
 - * Test setup allows the influence of the sub to be assessed.
 - * Loose gravel layer allows deformation of drainage aggregate
- * Limitations
 - * Profile changes with each test.
 - * The rubber subgrade.
 - * limited area.
 - * Manual selection of points analysed.
 - * Limited number of measurement points.

- * Profile changes with every test
 - * Are you analysing the geotextile or the change in rock profile

- * Rubber subgrade
 - * 25mm thick
 - * Shore hardness 45 55A
- * Does it represent a CCL?

* Selection of worst deformations is subjective

3.2% strain

Method Comparison - America

* ASTM D5514-06 (2011):

- * 450mm dia.
- * Inverted profile
- * 0.5 mm organ pipe recording plate

Method Comparison - America

- * ASTM D5514-06 (2011):
- * Advantages
 - * Simple test assembly.
 - * Repeatable testing.
- * Limitations
 - * Placement ≠ site
 - * No influence of subgrade (conservative)
 - * Stain calculation
 - * Method A Influence of consolidation of subgrade
 - * Method B High strains
 - * Method C Low strains

Strain Measurement - Australia

- * 0.3mm aluminium
- * Overlapping passes of the scanning device
- * > 200,000 points measured
- * Accuracy 0.009mm
- * Outer 50 mm removed edge effects

Strain Interpretation

- * Strain image
 - * Highlights strains across surface

Strain Interpretation

- * Strain graph
 - * Based on total area

Method Comparison – USA/AUS

Australian Methodology

- * Fixed gravel profile
- * Inverted
- * As built
 - * Subgrade
 - * GCL Hydrated or not
 - * Compacted clay subgrade
- * Strain Measurement Laser scanning
 - * Development of a methodology for the evaluation of geomembrane strain and relative performance of cushion geotextiles.

Method Comparison – USA/AUS

* Gravel placement

- * Gravel tends to fall with flat side down
- * Standard creates a very aggressive profile
 - * Unrealistic
 - * OK if all you want to measure is puncture

Gravel "Pizza"

- Manufactured to mimic construction
 - * Multiple layers of resin
 - * Gravel
 - * ± 10mm Silicone
 - * Geotextile
- * Remove silicone
- * Grind resin filling voids
- * Concerns / Limitations
 - * Fixed profile doesn't allow rock to move
 - * Rock can break down with multiple uses

Compacted Clay Liner

- * Condition clay to OMC
 - * MC can have significant impact on compressive strength
- * Compact in 3No. 25mm layers
- * Concerns / Limitations
 - * Apply final load on an unconsolidated clay
 - * No drainage path for clay
 - * Load applied very quickly

* Subgrade has a significant influence

* Clay characteristics are very important

* GCL Subgrade

- * Hydration has a significant impact
- * 24 hours under 10kPa (>100% MC is it realistic)
- * 24 hours under 25kPa (>80% MC)
- * 50% moisture content = firm subgrade

Test Specification

* Loads

- * Use design height
 - * Double load = ± Double strain
- * Use accurate waste density
- * Duration
 - * 24 hours is adequate
- * Temperature
 - * Temperature vs. stress relaxation

This is a rapid test it does not allow for consolidation of subgrade during fill placement or stress relaxation due to temperature

Geotextile specification

* Needle Free!!!

- None of what we have talked about matters if the geotextile contains needles
- * If the supplier cant certify needle free don't use them

Conclusions

- * The method used will influence strain results reported.
- * The Lower the strain the lower the difference
- * HDPE in USA since 1982 (37 years)
 - * Strains approx. 11%
 - * No documented failures due to NCTL
- * NCTL has increased by 2 to 2.5 times
- * There is a limit to how much protection a geotextile can provide.
 - * Sand protection is the next step (> 150mm)

Thank You For Your Attention!

W.P. Hornsey

TRI Australasia Pty Ltd, Gold Coast, Australia